
 

we have seen so far that the sectionalcurvatureis pinchingandatpoints
where the scalarcurvature a wegetthem pinching togetherto a
constant

we alsoknow that Rmax t guy Ruit
a ast T

on M g01 w Ric o 0 b c Risgift 0 Vt and therethe

eigenvalues of Ric satisfy a b c 70 and IRI a b4c atb c

R Theis the scalar curvatureexplodes at somepoint onM as

T but we cannotyetguarantee that it happenseverywhere on
M

Whatweknowfrompreviousestimates is that 1 1 CR 8

wherethe LHSis a scale invariant quantityand theRHS 0 when

scalarcurvaturebecomesvery large

expectation whenthe scalar curvature becomes uniformly large thenthe

evolvingmetric is close tobeing Einstein we expect TR 0

we want suchbounds on TR b c then we can expect to compare
the values of R at different points by the fundamentaltheoremof
calculus
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Gscale invariantquantity

We come back to the proofofthe theorem later The idea is to compute
evolution of and use the max principle
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from which the result follows
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Semema let Mgh be a RF w R SO initially Then aslongas
the solnexists we have
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fromwhich the resultfollows

Sinie we want to look at the Einsteintensor as well it might be

worthwhile to look at evolutionofthe norm sequareoftheEinstein
tensor
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Proof Use the expression for Rijk in 3 dim in theformulafor 2 trial
This is also a problemon the exercise sheet

nownotice that the bad term in 1112 sevolution is

2
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whichafterusing Young ineq will be in a form whichcombe
tackled by the good term 2 IFRC 2 1314812 from
the evolutionof Rich IR This is precisely our strategy

note that in dim 3 KRicI I TIRI but we wantsomething
better
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Overall we have
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and

the goodterm in the evolutionof Ric 2 R is

37
gun suggests that if we consider the

function
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from the previouslemmas weget
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All the terms in g have signsexceptfor the lasttermandwe'dlike
toestimate the lastterm so that it hasa sign
note on an Einsteinmetric Ri Rzg
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so on an Einstein metric this term o

and by the pinching estimate we expect the
manifold to be Einstein thisterms must be small
when M is almost Einstein
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can be made O w the inequalities above
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for large R the dominatingtermabove is R
8

and hence is in negative And when R o then it
does not diverge as the powers remain positive
8 anall a uniform houndc's
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Thusthe proofof the gradient estimates is complete


